Multivariate negative binomial models for insurance claim counts

نویسندگان

  • Peng Shi
  • Emiliano A. Valdez
چکیده

It is no longer uncommon these days to find the need in actuarial practice to model claim counts from multiple types of coverage, such as the ratemaking process for bundled insurance contracts. Since di↵erent types of claims are conceivably correlated with each other, the multivariate count regression models that emphasize the dependency among claim types are more helpful for inference and prediction purposes. Motivated by the characteristics of an insurance dataset, we investigate alternative approaches to constructing multivariate count models based on the negative binomial distribution. A classical approach to induce correlation is to employ common shock variables. However, this formulation relies on the NB-I distribution which is restrictive for dispersion modeling. To address these issues, we consider two di↵erent methods of modeling multivariate claim counts using copulas. The first one works with the discrete count data directly using a mixture of max-id copulas that allows for flexible pair-wise association as well as tail and global dependence. The second one employs elliptical copulas to join continuitized data while preserving the dependence structure of the original counts. The empirical analysis examines a portfolio of auto insurance policies from a Singapore insurer where claim frequency of three types of claims (third party property damage, own damage, and third party bodily injury) are considered. The results demonstrate the superiority of the copula-based approaches over the common shock model. Finally, we implemented the various models in loss predictive applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Count Data using Bivariate Negative Binomial Regression Models

Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...

متن کامل

Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models ‎ for Analysis of Count Data with Extra Zeros

In this paper‎, ‎we ‎propose ‎Hurdle regression models for analysing count responses with extra zeros‎. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset‎. In this example‎, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...

متن کامل

A Multilevel Analysis of Intercompany Claim Counts

It is common for professional associations and regulators to combine the claims experience of several insurers into a database known as an “intercompany” experience data set. In this paper, we analyze data on claim counts provided by the General Insurance Association of Singapore, an organization consisting of most of the general insurers in Singapore. Our data comes from the financial records ...

متن کامل

A Multivariate Bayesian Claim Count Development Model With Closed Form Posterior and Predictive Distributions

We present a rich, yet tractable, multivariate Bayesian model of claim count development. The model combines two conjugate families: the gamma-Poisson distribution for ultimate claim counts and the Dirichlet-multinomial distribution for emergence. We compute closed form expressions for all distributions of actuarial interest, including the posterior distribution of parameters and the predictive...

متن کامل

Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation

Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and negative binomial distribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012